3.50 \(\int (d \cot (e+f x))^n \sin (e+f x) \, dx\)

Optimal. Leaf size=73 \[ -\frac{\sin (e+f x) \sin ^2(e+f x)^{n/2} (d \cot (e+f x))^{n+1} \text{Hypergeometric2F1}\left (\frac{n}{2},\frac{n+1}{2},\frac{n+3}{2},\cos ^2(e+f x)\right )}{d f (n+1)} \]

[Out]

-(((d*Cot[e + f*x])^(1 + n)*Hypergeometric2F1[n/2, (1 + n)/2, (3 + n)/2, Cos[e + f*x]^2]*Sin[e + f*x]*(Sin[e +
 f*x]^2)^(n/2))/(d*f*(1 + n)))

________________________________________________________________________________________

Rubi [A]  time = 0.0411376, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.059, Rules used = {2617} \[ -\frac{\sin (e+f x) \sin ^2(e+f x)^{n/2} (d \cot (e+f x))^{n+1} \, _2F_1\left (\frac{n}{2},\frac{n+1}{2};\frac{n+3}{2};\cos ^2(e+f x)\right )}{d f (n+1)} \]

Antiderivative was successfully verified.

[In]

Int[(d*Cot[e + f*x])^n*Sin[e + f*x],x]

[Out]

-(((d*Cot[e + f*x])^(1 + n)*Hypergeometric2F1[n/2, (1 + n)/2, (3 + n)/2, Cos[e + f*x]^2]*Sin[e + f*x]*(Sin[e +
 f*x]^2)^(n/2))/(d*f*(1 + n)))

Rule 2617

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*Sec[e +
f*x])^m*(b*Tan[e + f*x])^(n + 1)*(Cos[e + f*x]^2)^((m + n + 1)/2)*Hypergeometric2F1[(n + 1)/2, (m + n + 1)/2,
(n + 3)/2, Sin[e + f*x]^2])/(b*f*(n + 1)), x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !IntegerQ[(n - 1)/2] &&  !In
tegerQ[m/2]

Rubi steps

\begin{align*} \int (d \cot (e+f x))^n \sin (e+f x) \, dx &=-\frac{(d \cot (e+f x))^{1+n} \, _2F_1\left (\frac{n}{2},\frac{1+n}{2};\frac{3+n}{2};\cos ^2(e+f x)\right ) \sin (e+f x) \sin ^2(e+f x)^{n/2}}{d f (1+n)}\\ \end{align*}

Mathematica [C]  time = 1.05132, size = 264, normalized size = 3.62 \[ -\frac{8 (n-4) \sin ^2\left (\frac{1}{2} (e+f x)\right ) \cos ^4\left (\frac{1}{2} (e+f x)\right ) F_1\left (1-\frac{n}{2};-n,2;2-\frac{n}{2};\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right ) (d \cot (e+f x))^n}{f (n-2) \left (2 (n-4) \cos ^2\left (\frac{1}{2} (e+f x)\right ) F_1\left (1-\frac{n}{2};-n,2;2-\frac{n}{2};\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )-2 (\cos (e+f x)-1) \left (n F_1\left (2-\frac{n}{2};1-n,2;3-\frac{n}{2};\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )+2 F_1\left (2-\frac{n}{2};-n,3;3-\frac{n}{2};\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d*Cot[e + f*x])^n*Sin[e + f*x],x]

[Out]

(-8*(-4 + n)*AppellF1[1 - n/2, -n, 2, 2 - n/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Cos[(e + f*x)/2]^4*(d*
Cot[e + f*x])^n*Sin[(e + f*x)/2]^2)/(f*(-2 + n)*(2*(-4 + n)*AppellF1[1 - n/2, -n, 2, 2 - n/2, Tan[(e + f*x)/2]
^2, -Tan[(e + f*x)/2]^2]*Cos[(e + f*x)/2]^2 - 2*(n*AppellF1[2 - n/2, 1 - n, 2, 3 - n/2, Tan[(e + f*x)/2]^2, -T
an[(e + f*x)/2]^2] + 2*AppellF1[2 - n/2, -n, 3, 3 - n/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2])*(-1 + Cos[e
 + f*x])))

________________________________________________________________________________________

Maple [F]  time = 1., size = 0, normalized size = 0. \begin{align*} \int \left ( d\cot \left ( fx+e \right ) \right ) ^{n}\sin \left ( fx+e \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*cot(f*x+e))^n*sin(f*x+e),x)

[Out]

int((d*cot(f*x+e))^n*sin(f*x+e),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \cot \left (f x + e\right )\right )^{n} \sin \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cot(f*x+e))^n*sin(f*x+e),x, algorithm="maxima")

[Out]

integrate((d*cot(f*x + e))^n*sin(f*x + e), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (d \cot \left (f x + e\right )\right )^{n} \sin \left (f x + e\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cot(f*x+e))^n*sin(f*x+e),x, algorithm="fricas")

[Out]

integral((d*cot(f*x + e))^n*sin(f*x + e), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \cot{\left (e + f x \right )}\right )^{n} \sin{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cot(f*x+e))**n*sin(f*x+e),x)

[Out]

Integral((d*cot(e + f*x))**n*sin(e + f*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \cot \left (f x + e\right )\right )^{n} \sin \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cot(f*x+e))^n*sin(f*x+e),x, algorithm="giac")

[Out]

integrate((d*cot(f*x + e))^n*sin(f*x + e), x)